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Abstract

This report presents an overview over important theory related to the solution
of the eigenvalue problem in structural dynamics. Some numerical algorithms
are presented, while an elaborate discussion of the inverse iteration method is
given. Further, an object-oriented framework featuring the concepts tensor-based
computations and coordinate-free element formulations will be explored. An im-
plementation of the inverse iteration method is carried out with the use of the
above-mentioned framework, and the results and performance of the implementa-
tion are discussed.
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1 Introduction

The purpose of this report is to investigate existing theory and algorithms con-
cerning numerical solutions to the eigenvalue problem in structural dynamics. A
description of the eigenvalue problem in a finite element context and its properties
are given before the procedure of the inverse iteration method is demonstrated and
implementated in a modified version, allowing the search for eigenvalue solutions
in an arbitrary range.

The features of the object-oriented framework which the implementation was built
on will further be explored, with special focus on the features that are relevant
for the implementation of the eigenvalue solver. The concept of coordinate-free
elements will be demonstrated, having a formulation disconnected from a global
coordinate system. The report will not go to deeply into code statements, but
rather present the ideas from a mathematical point-of-view. Still, it should be quite
clear to the reader having some experience with object-oriented programming how
the various operations can be implemented in terms of e.g. overloaded operators.

Traditionally, finite element techniques establish a global stiffness matrix on which
the solution procedure operates. This report will briefly discuss how abandoning
the global matrix in favor of tensors—that themselves reside solely in the objects
representing the degrees-of-freedom—not only gives a “cleaner” code, but also
demonstrably a faster code.

The efficiency of the implemented eigenvalue solver as well as the validity of the
calculated results will be investigated. Finally, suitable applications for the solver
and its limitations and weaknesses are discussed.
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2 Theoretical background

2.1 The eigenvalue problem in
structural dynamics

2.1.1 Importance

The concepts of natural frequencies and mode shapes play a central role in the
analysis of dynamic response due to fluctuating loads acting on a structure. If
the frequency content of the load matches the natural frequency of the structure,
resonance phenomena will occur and the response will grow dramatically. The
violent behaviour that results from resonance can eventually cause the structure
to collapse, and must thus be considered during design. In nature, periodic loads
appear as e.g. wind loads and earthquakes.

We mention that knowledge about the natural frequencies is particularly impor-
tant for wind turbine structures, as they are being exposed to loads with a wide
frequency spectrum. A wind turbine’s dynamic response will be a key factor for
design.

2.1.2 Definition and properties

The dynamic equation of motion for a general finite element system in free, un-
damped vibration can be stated as

Mr̈ (t) + Kr (t) = 0 , (2.1)

where M and K is the system’s mass and stiffness matrix, while r is the vec-
tor containing the unknown displacements of the N degrees-of-freedoms (DOFs).
A solution to this differential equation is r (t) = φ sin(ωt), which inserted into
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equation 2.1 yields the familiar eigenproblem in structural dynamics:(
K− ω2 M

)
φ = 0 , (2.2)

or equivalently, by left-multiplying by M−1, the standard eigenproblem(
A− ω2 I

)
φ = 0 where A = M−1K (2.3)

This system of equations generally has N solutions: N eigenvectors, φn; and their
corresponding eigenvalues, ω2

n = λn. Due to K and M being symmetric and
positive semidefinite, the eigenvalues are real and non-negative. Note that to be
precise, the term “eigenvalues of a matrix” means the solution to (2.3), with A as
the matrix.

The resulting eigenvectors give the free vibration shapes, or the mode shapes.
The corresponding value of ω =

√
λ is the mode’s circular frequency or natu-

ral frequency (in rad/s). The mode shapes has the important property of being
orthogonal with respect to both the stiffness and mass matrix, i.e.

φ
T

jMφi = 0 when i 6= j

φ
T

jKφi = 0 when i 6= j

This can be interpreted in the sense that there is no coupling between forces
arising from a displacement φi and forces arising from a displacement φj, both
elastic and inertia forces[2, p.164]. The orthogonality property can further be used
in modal analysis, where the response of each mode are calculated independently
and superpositioned for the total response.

2.1.3 Eigenvalue shift

It can be shown[4] that the shifted matrix

Aµ = A− µI

has the same eigenvectors as A and the eigenvalues λi−µ, where λi is the eigenval-
ues of A and µ is the shift. This is a property that will be useful in the discussion
of the inverse iteration method (Section 2.3).

The equivalent shifted expression of (2.3) is

((A− µI)− λI) v = 0 where A = M−1K . (2.4)
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We note that the equation above can be written on the form

(A− µI) v = λv , (2.5)

or equivalently, by left-multiplying by M

(K− µM)︸ ︷︷ ︸
Kµ

v = λMv . (2.6)

2.2 Numerical eigenproblem algorithms

A lot of research has been made on the subject of finding reliable and efficient
methods for solving the eigenvalue problem. Solution methods must in general be
iterative, as solving the eigenvalue equation is basically equivalent to solving for
the roots of a polynomial of degree equal to the number of degrees-of-freedom (i.e.
the dimension of v). As is known, no explicit formula exists for polynomials of
order > 4.

When selecting a numerical algorithm for a special-purpose eigenvalue solver, sev-
eral factors should be taken into account:

• Ease of implementation

• Rate of convergence and efficiency

• Numerical stability

• The properties of the problem to be solved: e.g. number of DOFs, number
of modes and range of interest, as well as the structure of the coefficient
matrices.

Several numerical algorithms exist, although each of them are suited to different
applications. The following methods are mentioned in the literature:

• Transformation methods. Calculate all the eigenvalues simultaneously,
and are therefore best suited to small systems, and when all eigenvalues
are interesting. Examples are the Jacobi method and the Householder-QR
method.

• The Sturm sequence. Determines the number of eigenvalues below a
certain trial value λ. Useful for checking that an algorithm has not missed
any solutions.
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• The inverse iteration method. Calculates the eigenpair closest to an
initial estimate for the eigenvalue. This algorithm is described more detailed
in the next section.

• Subspace iteration. A generalization of the inverse iteration method.
Widely used to obtain a prescribed number of the lowest eigenpairs.[4]

• Lanczos method. Similar to subspace iteration, and is claimed to be from
two to ten times faster.

• Root-finding of the characteristic polynomial. Generally not a practical
method for large systems due to much computational effort required and
sensitivity to numerical round-off errors.

Further details of these algorithms can be found in i.e. [4, p. 679][1].

2.3 The inverse iteration method

The inverse iteration method is a simple and effective iterative method for finding
an eigenvector close to a guessed eigenvalue. By applying appropriate eigenvalue
shifts, any eigenvector can be found. In addition, if estimates that are close to
the eigenvalues are known a priori, a rapid convergence towards the eigenvectors
is achieved. The eigevector’s corresponding eigenvalue can further be calculated
by the Rayleigh quotient.

The inverse iteration method is basically a modified version of the power method
[6, Section 20.8], and where the power method converges to the highest eigenvalue,
the inverse method gives the lowest, fundamental eigenvalue.

2.3.1 Procedure

As the name suggests, the method operates on the inverse of the matrix of which
eigenvalues are wanted. In essence, the method repeatedly multiplies an estimated
eigenvector by the inverse of the coefficient matrix (see (2.3)).

vi+1 = A−1λvi , (2.7a)

or equivalently

vi+1 = K−1 (λMvi) , (2.7b)
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where A = M−1K in general will be unsymmetric.

The factor λ can be set equal to 1, as scaling the eigenvector will not affect the
final result. The initial guess for the eigenvector, v0 can be taken as any non-
zero vector, with the only requirement that it is not orthogonal to the correct
eigenvector. If v0 were to be orthogonal, convergence would not be achieved (in
exact arithmetic). For simplicity, the initial guess can be taken as

v0 =
[
1 1 · · · 1

]T
,

or some other non-zero random vector. The last equation will be the preferred
form, as the symmetry of the stiffness matrix K is maintained. This will be
beneficial when solving. Of course, calculating the inverse is expensive, so instead
(2.7b) should be solved using i.e. Gaussian elimination or some other equation
solving technique.

Between iterations, the new vector estimate is scaled by a factor so that its length
doesn’t grow too large or too small, which may cause numerical problems–typically
so that the largest vector element is made equal to unity. By denoting the scaled
vector by v̂, the scaling reads

v̂i+1 = vi+1

max (vi+1) .

After a sufficient number of iterations, solving and scaling each time, this iteration
scheme converges to the eigenvector corresponding to the lowest eigenvalue of A,
and thus the eigenvector which solves the eigenvalue equation. A proof of the
convergence is given in 2.3.3.

Having calculated the eigenvector, an updated estimate for the corresponding
eigenvalue can be computed by the Rayleigh quotient

λi+1 = v̂T
i+1Kv̂i+1

v̂T
i+1Mv̂i+1

= vT
i+1Mv̂i

vT
i+1Mvi+1

(2.8)

and a criterion for determining sufficient convergence and aborting the iterations
can be taken as

λk+1 − λk
λk+1

≤ ε (2.9)

with ε = 10−2s if 2s-digit accuracy as desired for the eigenvalue. The accuracy of
the eigenvector will be s.

The algorithm for solving for the first eigenvalue is listed in Algorithm 2.1.
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Algorithm 2.1 Inverse iteration, fundamental eigenvalue
Require: v0 6= 0, λ0 = 0
Require: v0 not orthogonal to correct solution
while (λk+1 − λk) /λk+1 > ε do

vk+1 ⇐ K−1Mv̂k

if max (vk+1) > 0 then
c⇐ max (vk+1)

else
c⇐ |min (vk+1)|

end if

v̂k+1 ⇐ vk+1/c

λk+1 = v̂T
k v̂k

vT
k+1v̂k

end while

2.3.2 Inverse iteration with shifts

The basic inverse iteration method will only find the first eigenfrequency and
eigenvector. However, by applying appropriate eigenvalue shifts, any solution can
be found.

As shown in Section 2.1.3, an eigenvalue shift will produce a system with the same
eigenvectors, whereas the new eigenvalues will be decrease by the same amount as
the size of the shift. This property can be exploited, namely by first performing
the subtraction Kµ = K−µM and use this shifted stiffness matrix for the inverse
iterations. Here µ is the shift, and subscript µ is used for the shifted stiffness
matrix. The procedure no longer converges to the lowest eigenvalue—instead it
converges to the eigenvalue which is closest to the shift on the eigenvalue axis.
Thus, if estimates to the eigenvalues are known, convergence to any of these can
be reached. The eigenvalue is computed by adding the shift to the eigenvalue
solution of the inverse iterations:

λ = λµ + µ (2.10)

Finally, we note that if no knowledge of the eigenvalues exists, an “ad-hoc” pos-
sibility for enumerating several solutions is to gradually increase the shift until
convergence to a new eigenvalue is reached. This modification is implemented and
further discussed in Section 4.2.
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2.3.3 Convergence and error

The convergence properties of the method depends mainly on where the shift is
located relative to the eigenvalues. A worst-case situation is when the shifted
position is exactly halfway between two solutions. In exact arithmetic, no amount
of iterations will give a converged solution in this situation. See Section 4.3.2 for
a study on the effect of the shift on the iteration count.

If the shift point is relatively close to the correct solution, it can be shown that the
convergence rate is approximately linear. Defining ε = µ−λ, it can be shown that
each iteration is expected to increase the accuracy of the eigenvector by a factor
of

|ε|
|λ+ ε− λclosest to λ|

(2.11)

Proof of convergence. Taking the correct eigenvectors as φn, and acknowledging
that these are orthogonal, the iterate v can be written as a linear combination of
these eigenvectors. This sum is called the modal expansion of v:

v =
N∑
n=1
φnqn =

N∑
n=1
φn

φTMv
φTMφn

(2.12a)

Substituting the modal expansion of v0 into (2.7b), the solution after the first
inverse iteration is given as

v1 =
N∑
n=1

K−1Mφnqn (2.12b)

From (2.2) we find that K−1Mφn = (1/λn)φn, and by substituting into the
equation above

v2 =
N∑
n=1

1
λn
φnqn = 1

λ1

N∑
n=1

λ1

λn
φnqn (2.12c)

For iteration number k, the sum reads

vk+1 = 1
(λ1)k

N∑
n=1

(
λ1

λn

)k
φnqn . (2.12d)

Since λ1 < λn for n > 1, we acknowledge that (λ1/λn)k k→∞−→ 0 for all n 6= 1. Thus
vk+1 converges to a vector proportional to φ1.

(2.12e)

8



A similar proof can be stated for the case where an eigenvalue shift is applied. For
further details, see [3, Section 10.13.2].

2.3.4 Remarks

• The non-orthogonality requirement is rarely an issue, as in floating point
arithmetic round-off errors will ensure that some component exists in the
direction of the correct eigenvector, v. If a random vector is generated as
the initial guess, the probability of an orthogonal initial guess is in all practice
zero.

• Repeated eigenvalues will not give two solutions, but rather the solution
closest to the initial guess.

• Some eigenvalue problems may have an eigenplane as a solution instead of a
unique eigenvector, as is the case with i.e. an axi-symmetric cantilever beam.
In these cases, the inverse iterations will converge to the direction closest to
the initial guess.

• The coefficient matrix resulting from applying an eigenvalue shift will have
to be refactored before solving, which can be an expensive operation.

• The rate of convergence can be improved (one order) by shifting K by the
most recent eigenvalue estimate after each iteration. The algorithm is in
this case called Rayleigh quotient iterations, and has the disadvantage that
the system will have to be refactored for every iteration. This method may
also converge to some other eigenvalue than the one closest to the shift, if
measures to avoid this is not employed.
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2.4 The mass matrix

2.4.1 Introduction

Different mass matrix formulations can be employed for the eigenvalue problem.
Where i.e. lumped masses yield a diagonal mass matrix which easily can be in-
verted, a consistent mass matrix is more accurate at the expense of more demand-
ing calculations.

Elements with lumped masses will seem heavier than they really are, and hence will
give a lower eigenfrequency than the exact value. However, with a fine mesh this
effect will be negligible. A consistent mass matrix is derived using the element’s
shape functions, and thus gives an element where kinetic and potential energy is
in balance. Consistent masses will in general give upper bounds on the natural
frequencies, but not always[7, Section 5.4].

One problem arising when using an ordinary lumped-mass formulation is that the
mass terms for the rotational DOFs usually will be set to zero. This will give rise to
eigenmodes with no distinct solution for the eigenvalue (i.e. an infinite eigenvalue).
To overcome this problem, the rotational DOFs must either be eliminated by the
use of static condensation or, alternatively, by introducing some non-zero mass
terms for the rotational DOFs. Ad hoc methods exist for including rotational
terms, which is easier to implement than static condensation. The quite useful
“HRZ” lumping method will be presented in the following.

2.4.2 HRZ lumping

The HRZ lumping technique, named after its authors, is an ad hoc method that
appears to be quite successful for beam elements, yielding a diagonal mass matrix
with non-zero and positive rotational terms. With a HRZ lumped mass matrix
the resulting natural frequencies of the elements will be somewhere between the
lumped and consistent formulation[4, p. 380][2].

The idea is to take only the diagonal terms from the consistent mass matrix, and
scale them so that the total element mass is correct. For a 2D 6-DOF beam element

10



with total mass m and length L, the diagonal of the consistent mass matrix reads

M = m

420



140 0 0 0 0 0
0 156 0 0 0 0
0 0 4L2 0 0 0
0 0 0 140 0 0
0 0 0 0 156 0
0 0 0 0 0 4L2


,

where the DOFs are d =
[
u1 v1 θz1 u2 v2 θz2

]T
. For a translational displace-

ment in the v direction, the sum of the mass terms is m
420 (156 + 156) = 312

420 m. By
enforcing the total mass for any translational displacement to be m, we scale all
the diagonal terms contributing to v displacement by the factor 420

312 . Similarily, in
the u direction the sum of the terms is m

420 (140 + 140) = 2
3m. No other terms than

the u translation terms will contribute to u displacement, so only the mass terms
for the u direction itself will be scaled.

The resulting mass matrix is

M = m



1/2 0 0 0 0 0
0 1/2 0 0 0 0
0 0 L2/78 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 L2/78


.

For the 3D case, extra 1/2 terms appear for the w direction, and L2/78 terms
for the θy direction. The mass terms corresponding to the torsional rotations (θx)
will, however, depend on the element’s cross-section. The corresponding consistent
mass term is given as

Mθxθx = mIp
3

where Ip is the polar moment of inertia.

For the case with a thin-walled axi-symmetric cross-section, the moment of inertia
is I = r2. For the full 12-DOF, 3D element with a thin-walled cross-section (e.g.
a pipe) using HRZ lumping the mass matrix for one node then reads:

M1 = m
⌈
1/2 1/2 1/2 r2/3 L2/78 L2/78

⌋
(2.13)

where the nodal displacements for one node are taken as

d =
[
u1 v1 w1 θx θy θz

]T
(2.14)
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3 An object-oriented finite
element framework

3.1 Introduction

The finite element framework used for this research is the work done by Rucki[11],
Miller[9] and Thomassen[12], and is a framework has been written and developed
on an underlying object-oriented philosophy.

The object-oriented approach gives code which is easier to maintain, re-use and
extend. In addition, since objects often represent some real-world entity, the struc-
ture of the code and the interaction between different code units will appear more
clearly and intuitive than for a non-object-oriented language (i.e. a procedure-
oriented language). In general, an object-oriented design gives potential for a
higher level of abstraction—providing an interface for the developer more closely
tied to the underlying mathematical or physical description.

A common conception is that, compared to traditional solvers, such high-level
abstractions will at some point be detrimental to performance, if utilized too deeply
into numerical calculations. However, research shows that performance on par with
traditional solvers can be achieved with the approach used in this framework. Even
an implementation on the Java platform, which usually performs worse than its
C++ or Fortran counterparts, has been demonstrated to be competitive[10].

The key features of the framework are

• Tensors and vectors instead of matrices and scalars used as the fundamental
quantities for defining the underlying mathematical problem.

• An isoparametric, coordinate-free formulation of the element.

• A high level of abstraction, in terms of objects, down to the core equation-
solving level.
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• Focus on allowing interactive manipulation of the model and analysis pa-
rameters in a rich graphics context.

• Providing real-time feedback of results (i.e. live modeling), avoiding the clas-
sical pre- and post-processing separation.

The features listed here are usually not seen in conventional finite element software.

This chapter will outline the important features of the framework, with focus on
the topics concerning the extension of the framework done in Section 4.2.

3.2 A coordinate-free element formulation

3.2.1 Stiffness relations

Miller et al. presents a mathematical derivation[10] of an arbitrary element’s
stiffness properties, where no assumption is made on the properties of the global
coordinate system, rendering expressions for the stiffness tensors with no explicit
reference to global coordinates. The approach eliminates the need for explicit
transformations between local and global coordinates, which instead will be im-
plicitly handled in the coordinate-free expressions. The properties of the global
coordinate system itself is encapsulated in the implementation of the vector and
tensor classes and their mathematical operators.

The basic steps for obtaining coordinate-free expressions for nodal forces and sub-
sequently for the stiffness tensors are here given for a straight beam element, only
considering small deflections. More details can be found in [8].

The position of points within the beam element can be parametrized in terms of
the parameter ξ as

φo (ξ) = ui + ξ (uj − ui) (3.15)

where ξ ∈ [0, 1] and ui, j is the position of the nodes. By taking the derivative
with respect to ξ, the basis in the physical space is found as

g1 = ∂φ0
∂ξ

= uj − ui = Ln (3.16)

where L is the element length and n is the unit direction vector of the element.
The dual basis (see Appendix A) is simply g1 = 1

L
n.
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By introducing the usual shape functions of a beam, the parametrized displacement
of the beam centerline due to bending can be expressed in terms of the nodal
displacements di, j and θi, j as

u0 (ξ) = N1 (ξ)
(
di − g1

(
g1 · u1

))
+N2 (ξ) (θi × g1) +

N3 (ξ)
(
dj − g1

(
g1 · u1

))
+N4 (ξ) (θj × g1) (3.17)

and the total displacement of an arbitrary point x can be written as

u (x) =u0 +
(
g1 × u′0

)
× s (3.18)

where s = x− φ0 (ξ). Further, the derivative ∂u/∂ξ is found as

∂u
∂ξ

=u′0 +
(
g1 × u′′0

)
× s (3.19)

Substituting the above into the expression for the small strain tensor, noting that
∇ = g1 ∂

∂ξ
gives

ε = 1
2
[
∇u + (∇u)T

]
(3.20)

and when adding the strain term for pure axial tension, the total strain in the
axial direction simplifies to

εnn = 1
L2 (u′′0 · s) + 1

L
(u′0 · n) (3.21)

Space does not allow for the full derivation here. However, when having developed
an expression for the strain tensor, assuming a linear material

σnn = Eεnn

and applying the principle of virtual work, the equivalent nodal forces and moments
is found as

f i =
[12E
L3 Î + AE

L
n⊗ n

]
(ui − uj) + 6E

L2

(
Î× n

)
(θi + θj)

f j =
[12E
L3 Î + AE

L
n⊗ n

]
(uj − ui)−

6E
L2

(
Î× n

)
(θi + θj)

mi = 6E
L2

(
Î× n

)
(ui − uj) + 2E

L

(
n× Î× n

)
(2θi + θj) + GJ

L
n⊗ n (θi − θj)

mj = 6E
L2

(
Î× n

)
(ui − uj) + 2E

L

(
n× Î× n

)
(θi + 2θj) + GJ

L
n⊗ n (θj − θi)

(3.22)
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where Î = Iss (s⊗ s) + Itt (t⊗ t) is the second moment of area tensor and J is
the torsional stiffness. We see that the stiffness relations are expressed completely
without any reference to a coordinate system.

By collecting terms, the equations may be written as
Kfu Kfθ −Kfu −Kfθ

Kmu Kmθ −Kmu −K̂mθ

−Kfu −Kfθ Kfu Kfθ

−Kmu −K̂mθ Kmu Kmθ



u1
θ1
u2
θ2

 =


f1
m1
f2
m2

 (3.23)

where the individual stiffness tensors are given as

Kfu = 12E
L3 Î + AE

L
(n⊗ n) (3.24a)

Kmu = KT
fθ = 6E

L2

(
n× Î

)
(3.24b)

Kmθ = 4E
L

Î + JG

L
(n⊗ n) (3.24c)

K̂mθ = 2E
L
− JG

L
(n⊗ n) (3.24d)

Again, no explicit references to coordinates appear.

For the 3D case, all vectors will have 3 components, and the tensors will have 9
components. It is noted that the geometric classes will eventually have to use some
form of coordinates internally, in order to carry out the computations.

3.2.2 Example: Calculating nodal forces for a simple beam
element

A simple example will be presented here, in order to demonstrate that the for-
mulation given above essentially is equivalent to applying a standard coordinate
transformation matrix to the local stiffness matrix.

Example 3.2.1. Take a simple beam element with its two nodes at positions
u1 =

[
0 0 0

]T
and u2 =

[
1 0 0

]T
. The unit direction vector is then n =

u2 − u1 =
[
1 0 0

]T
. The directions of the strong and weak axes can then be

taken as s =
[
0 0 −1

]T
and t = s× n =

[
0 −1 0

]T
, respectively.
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First we se that the tensor products in (3.22) quite simply becomes

n⊗ n = nnT =

1 0 0
0 0 0
0 0 0



s⊗ s = ssT =

0 0 0
0 0 0
0 0 1



t⊗ t = ttT =

0 0 0
0 1 0
0 0 0


(3.25)

By e.g. writing out the full 3x3 stiffness tensor Kfu (which relates u1 to f1):

Kfu = 12E
L3

Iss
0 0 0

0 1 0
0 0 0

+ Itt

0 0 0
0 0 0
0 0 1


+ AE

L

1 0 0
0 0 0
0 0 0

 (3.26)

we find that a unit displacement of u1 =
[
1 0 0

]T
gives the nodal force in node 1

f1 = Kfuu1 = EA

L

1
0
0

 (3.27)

which is expected, as a pure axial displacement should result in a pure axial force.
If the nodal displacement is taken to be u1 =

[
0 1 0

]
, the nodal force in node 1

becomes

f1 = Kfuu1 = 12E
L3 Iss

0
1
0

 (3.28)

which gives a shear force in the y direction, as expected. By applying a transla-
tion containing components in both directions, the resulting nodal force will be a
combination of the expressions above. We note that the tensor expressions auto-
matically do what a traditional transformation matrix with direction cosines would
do, however in an arguably more “clever” manner.
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3.2.3 Expressions for the mass tensors

By pursuing the coordinate-free formulation of the element’s stiffnes tensors, an
equal approach should be used for the mass equivalent. If the HRZ lumping scheme
(Section 2.4.2) is employed, the nodal acceleration–force relation reads


Mfu 0 0 0

0 Mmθ 0 0
0 0 Mfu 0
0 0 0 Mmθ



ü1
θ̈1
ü2
θ̈2

 =


f1
m1
f2
m2

 (3.29)

where the individual mass tensors are

Mfu = m

2 (n⊗ n + s⊗ s + t⊗ t) (3.30a)

Kmu = mL2

78 (s⊗ s + t⊗ t) + mr2

3 (n⊗ n) (3.30b)

where the element has been assumed to have a thin-walled cross-section, giving a
(mass) moment of inertia equal to mr2.
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4 Implementation and results

4.1 Introduction

A modified eigenvalue algorithm based on the inverse iteration method is here
proposed and implemented by use of the framework described in Chapter 3. The
results computed with the solver are verified by comparing to an exact expression
for a cantilever beam problem. Further, the efficiency and convergence rate of the
code is investigated. A short demonstration of how the code interacts with and
extends the framework is given, as well as a demonstration of the visualization of
the model’s resulting eigenvectors.

4.2 Implementation of the inverse iteration
algorithm

4.2.1 The modified algorithm

The basis for the algorithm is the inverse iteration method, outlined in 2.3. As
shown earlier, this method in its basic form can only extract the lowest eigenvalue
of the system at hand. In order to enumerate eigenpair solutions in some range, say
λ ∈ [0, λmax], a “brute-force” approach is here suggested and implemented, where
the shift point is incrementally moved to the right on the eigenvalue axis. After
each shift increment, inverse iterations are performed. If the iterations converge
forward/right, a new eigenvalue has been found, and the incrementing can start
over again from this new point.

The initial increment of the shift is set by the analyst, and its value limits the lower
resolution on the eigenvalue axis. If the shift increment is set too large solutions
may therefore be missed. Exploiting the fact that the inverse iterations converge
to the eigenvalue closest to the shift point, the size of the shift can be doubled
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after each iteration when converging back to the previous value, without missing
any solutions. The doubling of the shift significantly reduces the complexity of the
algorithm, as will be seen in Section 4.2.2.

We further take the following parameters as inputs to the eigenvalue solver

• ∆µ0, initial shift/minimum search resolution (on the eigenvalue axis).

• λmax, upper bound on λ.

• N , maximum number of solutions to find.

• K0, the initial stiffness matrix and M, the mass matrix.

The essential steps of the algorithm is listed in Algorithm 4.2.

Algorithm 4.2 Eigenvalue search using inverse iterations with incrementing shifts
λ0 ⇐ 0
for i = 1→ N do
λi ⇐ −∞
µ⇐ ∆µ0 (initial shift)
while λi − λi−1 < ∆µ0 and λi−1 + µ < λmax do

K⇐ K0 − (λi−1 + µ) M
loop

vi ⇐
[
1 1 · · · 1

]T
vi ⇐ K−1 (Mvi)
c⇐ max {|vm|} (largest absolute value of vector elements)
v̂⇐ vi/c

λ∗ = v̂Tv̂
vT
i v̂

if (λ∗ − λ) /λ∗ < ε then
λi ⇐ λ∗

break loop (inverse iterations converged)
end if
λi ⇐ λ∗

end loop
µ⇐ 2µ

end while
end for
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4.2.2 Time analysis

Assuming a solution λj has just been found and that the solver proceeds to grad-
ually shift the system in order to find the next solution. Let the distance to the
next eigenvalue be d and let the minimum search resolution be some multiple of
this distance: ∆µ0 = c · d, with c << 1. Further, we assume that an upper bound,
U , on the number of inverse iterations (for each shift increment) is enforced, so
that if this limit is reached it can safely be assumed that the shift is not in the
vicinity of a solution, and thus can be aborted. Although the number of iterations
needed to reach the desired tolerance varies somewhat linearly with the distance
from the shifted position to the eigenvalue (see 2.3.3), we can conservatively take
this number equal to the maximum limit enforced above, U .

For a system with n degrees of freedom, presumably with a dense coefficient matrix,
the cost of the different operations performed is

• LU decomposition of the system of equations: n3/3 operations.

• Calculating the right hand side, Mvi: ∼ n operations.

• Solving the system of equations: ∼ n2 operations.

• Calculating the Rayleigh quotient: ∼ n2 operations.

• Resetting and shifting the stiffness matrix: ∼ n operations.

It is noted that for a system of equations with a mainly digonal structure, the
expression above will be different.

We remind us that the iterations converge to the closest solution, so the critical
point is half-way between the solutions. By doubling the shift for each increment,
the number of increments k needed is found by

(∆µ0) · 2k = d

2

=⇒ k = log2

(
d

2∆µ0

)
= log2

(
d

c · 2d

)

= log2

( 1
2c

)
(4.31)
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The total number of operations needed for the next solution is then

T = k
[
n3/3 + U · n+ U · n2 + n

]
= log2

( 1
2c

) [
n3/3 + U · n+ U · n2 + n

]
(4.32)

≈ log2

( 1
2c

) [
n3/3 + U · n2

]
(4.33)

If N eigenvalue solutions are wanted, the total number of operations will be ∼ NT ,
although c will vary if ∆µ is kept constant (as will be the case when this parameter
is selected by the analyst). As expected, the running time will depend on how the
eigenvalues are distributed. Still, we note the logarithmic dependency on the ratio
d/∆µ0.

4.2.3 Interface to the framework

Functionality in the framework for generating finite element models and generating
the stiffness of the elements already existed. Some modifications were made in
order to introduce well-behaving mass tensors, as discussed in Section 3.2.3. The
framework’s built-in Gaussian elimination solver were used to solve the system of
equations in each iteration.

The framework’s well-designed interfaces allowed for an easy implementation of
new functionality, almost without modifying existing code. The major implemen-
tation steps were:

• Extension of the GaussElimSolver class to the new class EigenvalueSolver,
in order to customize the solving functions and i.e. intercept the process of
creating DOFs. All the eigenvalue solver code was implemented in this class.

• Extension of the GaussElimDOF class to the new class EigenvalueDOF, in
order to add mass properties to the DOFs. Functions were added for shifting
the stiffness tensor (see Section 2.1.3), and for storing and retrieving the
displaced position vector for the DOF for each of the mode shapes that were
found.

• Extension of the GaussElimInteraction class to EigenvalueInteraction,
in order to add mass properties for the interactions between DOFs.

The declarations/headers of the implemented classes can be seen in Appendix B.
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4.3 Results

4.3.1 Verification of solutions

A comparison between eigenvalues calculated by the solver and analytical values
is here given for a cantilevered beam model. The eigenvectors were not specifically
verified, except by visual inspection of animations of the shapes. Solutions for
another, more complex model is also given, however due to time constraints these
values could not be compared with other solvers.

• Cantilevered beam modelled with 50 3D elements having an axi-symmetric
cross-section.

• The NREL 5-MW wind turbine model, with a tower consisting of a monopile
on top of a truss tower, in addition to three blades.

Cantilevered beam
The eigenvalues of a cantilevered axi-symmetric beam was calculated using the
following properties:

E = 210 · 109 Pa, G = 80.2 · 109 Pa, I = 3.927 · 10−3 m4

m = 246.6 kg/m, A = 2πrt = 84.8 · 10−3 m2 and L = 10 m .

The calculated values of the eigenfrequencies are given in Table 4.1, compared to
exact values [2, p.75] for the bending modes. We see from table 4.1 that the solver
gives almost identical results to the exact values. The error in the last digit is
most likely caused by a round-off error, as the accuracy of the solver was set to
approximately 4 digits (ελ = 10−7).

Table 4.1: Calculated eigenfrequencies for cantilever beam
n fn [Hz] f exact

n [Hz] Mode identification
1 10.23 10.23 First bending
2 64.12 64.12 Second bending
3 80.19 - First torsional
4 129.3 - First axial
5 179.5 179.6 Third bending
6 240.6 - Second torsional

NREL 5MW model
The 10 first eigenvalues of a the NREL 5-MW reference turbine[5] were calculated.
Due to the mass distributions and stiffnesses of the blades and nacelle being wrong,

22



the results are not correct. Still, they will be presented here. The eigenvalues are
for a standstill turbine with the blades set with one blade pointing downwards,
parallel to the tower.

The values used for the tower were

E = 210 · 109 Pa, G = 80.2 · 109 Pa, dbottom = 6 m, dtop = 3.87 m
tbottom = 0.027 m, ttop = 0.019 m, ρ = 8500 kg/m3

and a pipe cross-section were used. The tower was modelled with 11 elements.
Results are presented in Table 4.2, although all the modes could not be identified.

Table 4.2: Calculated eigenfrequencies of NREL wind turbine model
n fn [Hz] Mode identification
1 0.6241 Tower side-to-side
2 0.6329 Tower fore-aft
3 1.138 Tower torsion
4 1.219 –
5 1.257 –
6 1.314 –
7 1.370 –
8 1.422 –
9 3.620 Second tower fore-aft
10 3.633 Second tower side-to-side

4.3.2 Convergence

A plot demonstrating the effect of the shift point on the iteration count needed
for convergence is shown in Figure 4.1. The convergence tolerance was set to
ελ = 10−7, and the model used was a model of the NREL wind turbine. When
the shift point approaches the mid-point between two eigenvalues, the number of
iterations needed approaches inifinity—as is expected. The lower peaks correspond
to the correct solutions, where only a few iterations is required.

Figure 4.2 shows how the solution time for the 5 first eigenvalues of the cantilever
beam problem scales with the number of elements used. The discrepancy with
(4.33) is most likely due to the fact that a tower structure will have a diagonal
equation system, where as the numbers given in (4.33) is for a system assumed to
be dense.
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Figure 4.1: Number of inverse iterations needed for convergence vs. shift point. Dashed
lines indicate the value of the converged solution, scaled as to fit in the plot. Lower
peaks correspond to the correct solutions.

4.4 Visualization and user interface

The framework allowed for easy use of existing visualization functionality and
code already existed (using OpenGL) for drawing the elements in their displaced
configuration. Using the eigenvector solutions, animations of the shapes could
quite easily be implemented. A simple user dialog was designed and coupled
to the eigenvalue solver. At the time of implementation, the MFC (Microsoft
Foundation Classes) framework was used for user interface design. A screenshot
of the interface, with an animated free-vibration mode in the background is seen
in Figure 4.3. Note that this is not the NREL reference turbine used earlier.

Snapshots from the animations are shown in Figure 4.4, displaying bending modes
of a cantilever beam model.

24



0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600

T [ms]

nelements

Figure 4.2: Solution time of 5 first modes for a cantilever beam compared to number of
elements used. Parameters used: ελ = 10−7, ∆µ0 = 0.01 s−2

4.5 Discussion

The inverse iteration method will converge very fast if the shifted point is close to
an eigenvalue. However, a “brute-force” search, which was suggested and imple-
mented here will in general not be competitive to more sofisticated eigenmethods
with respect to performance. If a large range is to be searched with a fine resolu-
tion, the solution time for a medium-sized problem will be on the scale of seconds.
Combination with some other algorithm, e.g. the Sturm sequence, might improve
the efficiency.

On the contrary, if only a few (e.g. 10) of the lowest modes are of interest, using
a medium search range, the solution time will be quite fast. By allowing a simple
implementation strategy where existing solver functionality can be used in-place,
the need for writing an efficient equation solver code is eliminated. The algorithm
may be a possible choice in such cases, where an easy and relatively uncomplex
implementation is desirable.

As shown here, the results for the eigenvalues of the model problem are correct
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Figure 4.3: User dialog for the eigenvalue solver, showing the the shape of mode 13 of a
wind turbine model.

(a) First mode (b) Second mode (c) Third mode

Figure 4.4: Bending modes of cantilever beam

when compared to exact values. By using different settings for the solver, one
can effectively guarantee that all solutions within some range are found. The
implementation is therefore reliable.

Having an eigenvalue solver implemented in close connection to the existing frame-
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work gives possibilities for a more interactive and responsive interface to the user,
as well as a potential for customizing the solver to new needs. On the contrary, if
an external solver library were to be used these features might be harder to im-
plement.
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5 Conclusion

As stated in the introduction, the main focus in this paper has been to become
familiar with efficient numerical methods for solving the eigenvalue problem in
structural dynamics in an efficient and reliable manner. A modification to the
inverse iteration method was developed in order to solve for eigenvalues in a range
without any prior knowledge about their positions on the eigenvalue axis.

The implemented algorithm was developed in a more or less ad hoc manner, but
provided to be well-suited to problems where either high efficiency was not impera-
tive or a somewhat uncomplicated algorithm was preferable. Further investigation
on the validity of the results and the behaviour of the solver for different parameter
settings was done.

An even more interesting part has been the study of the arguably state-of-the-
art features of the finite element framework that was used. In describing the
concepts of coordinate-free elements and tensor-based formulations, the clarity and
“cleanness” these features provided in an implementation context was experienced.
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Appendix A

Dual vector space

The mathematical concept of dual spaces may be useful for defining tensor relations
needed in order to develop expressions for e.g. the stiffness tensors. For complete-
ness, and due to its use in the deduction of element stiffness (Section 3.2.1), the
concept is appended here.

In mathematics, any vector space , V , has a corresponding dual vector space
consisting of all linear functionals on V . Stated mathematically, for any vector
space V over a field F , the dual space, V ∗ is all linear maps

ϕ : V → F

Given a basis {e1, . . . , en} in V , a basis in the dual space V ∗, {e1, . . . , en} is defined
such that

ei · ej = δij =

1, if i = j

0, if 6= j
(A.1)

Example

By taking the basis in 2D space (V = R2), as {e1, e2} =
{[

1
0

]
,

[
0
1

]}
, a basis of

its dual space R2∗ is {e1, e2} =
{[

1 0
]
,
[
0 1

]}
.

In 3D space, the dual basis can be calculated from the following formulas:

e1 = (e2 × e3)
(e2 × e3) · e1

, e2 = (e3 × e1)
(e3 × e1) · e2

, e3 = (e1 × e2)
(e1 × e2) · e3

(A.2)
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Appendix B

C++ class declarations

1 #inc lude " G a u s s E l i m I n t e r a c t i o n . h"

3 /∗∗
∗ An E i g e n v a l u e I n t e r a c t i o n i s no more than a b a s i c I n t e r a c t i o n .

5 ∗ A d d i t i o n a l l y , a mass t e n s o r i s d e f i n e d f o r the i n t e r a c t i o n ,
∗ which i s n e c e s s a r y f o r s o l v i n g the e i g e n v a l u e problem .

7 ∗
∗ @author Per I v a r Bruheim

9 ∗ @date 15 .10 .2011
∗

11 ∗/
c l a s s E i g e n v a l u e I n t e r a c t i o n : pub l i c G a u s s E l i m I n t e r a c t i o n

13 {

15 pub l i c :
E i g e n v a l u e I n t e r a c t i o n ( ) ;

17 E i g e n v a l u e I n t e r a c t i o n (DOF∗ who , GTensor &k i j , GTensor &mij ,
I n t e r a c t i o n ∗ next ) ;

19 /// The mass t e n s o r f o r t h i s i n t e r a c t i o n
GTensor mMassWhat ;

21 /// A copy o f the o r i g i n a l mass t en so r , f o r use when r e s e t t i n g
GTensor mOrigWhat ;

23 } ;

:

1 #inc lude " GaussElimDOF . h"
#inc lude <map>

3
/∗∗

5 ∗ An EigenvalueDOF i s e s s e n t i a l l y a GaussElimDOF with mass
p r o p e r t i e s
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∗ i n c l u d e d and added f u n c t i o n a l i t y , i . e f o r s h i f t i n g the s t i f f n e s s
7 ∗ and o th e r u s e f u l f u n c t i o n s f o r the E i g e n v a l u e S o l v e r .

∗
9 ∗ @author Per I v a r Bruheim

∗/
11 c l a s s EigenvalueDOF : pub l i c GaussElimDOF

{
13 pub l i c :

EigenvalueDOF ( ) ;
15 I n t e r a c t i o n ∗ Make I n t e r a c t i o n ( ) ;

17 // O v e r r i d e s o f DOF : :
v i r t u a l void Connect (DOF ∗ do f j , GTensor &k i j ) ;

19 v i r t u a l void Connect (DOF ∗ do f j , GTensor &k i j , GTensor &mi j ) ;
v i r t u a l void Se l fConnec t ( GSymmTensor &k i j , GSymmTensor &mi j ) ;

21 v i r t u a l void Hand l eCon s t r a i n t ( ) ;

23 // Added f u n c t i o n s
S c a l a r GetOmega ( i n t modeNumber ) const ;

25 void SetD i sp l a cement ( GVector const& v ) ;
i n t SetDisplacementByMode ( i n t modeNumber , S c a l a r s c a l e = 1 . 0 ) ;

27 void ResetKM ( ) ;
void S h i f t S t i f f n e s ( S c a l a r mu) ;

29 void StoreMode ( i n t modeNumber , S c a l a r omega ) ;
GVector& Ge t I n e r t i a l LoadF romDi sp l a c emen t ( GVector &v ) const ;

31
/// This DOF ’ s mass t e n s o r

33 GSymmTensor mSelfMass ;
GSymmTensor m O r i g S e l f I n t e r a c t i o n ;

35 GVector mPrevDisp lacement ;

37 pr i va te :

39 s t ruc t E i g enP a i r { GVector v ; S c a l a r omega ; } ;
/// A v e c t o r t ha t i s f i l l e d up wi th d i s p l a c e m e n t s r e s u l t i n g from

41 // c a l c u l a t i n g each mode . The modes a r e o rd e r ed from l o w e s t to
// h i g h e s e i g e n f r e q u e n c y .

43 s t d : : map<int , E i genPa i r > mModes ;
/// The mode number tha t i s c u r r e n t l y s e t

45 i n t mCurrentMode ;

47 } ;

:

1 #inc lude " Gau s sE l imSo l v e r . h"
#inc lude " EigenvalueDOF . h"

3
c l a s s E i g e n v a l u e S o l v e r : pub l i c Gaus sE l imSo l v e r
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5 {

7 pub l i c :
E i g e n v a l u e S o l v e r ( i n t numModesToFind , S c a l a r rangeMin = 0 . 0 , S c a l a r

rangeMax = 1E6 , S c a l a r conve rg enceTo l e r ance = 1E−6) ;
9 ~ E i g e n v a l u e S o l v e r ( ) ;

11 // O v e r r i d e s
v i r t u a l EigenvalueDOF∗ MakeDOF( ) ;

13 v i r t u a l void SetDOFs (DOF∗ do f s ) ;
v i r t u a l void So lveSystem ( ) ;

15
// Non−o v e r r i d e s

17 S c a l a r Ge tRay l e i ghQuo t i e n t ( ) const ;
i n t GetNumModesFound ( ) const ;

19 void SetConve rgenceTo l e r ance ( S c a l a r eps ) ;
/// Funct i on used f o r benchmark ing and s t u d y i n g the e f f e c t o f the

i n i t i a l s t e p
21 void S e t I n i t i a l S h i f t ( S c a l a r mu) { mMu = mu; }

23 pr i va te :
S c a l a r mTolerance ;

25 i n t mNumModesToFind ;
i n t mNumModesFound ;

27 S c a l a r mSh i f t ;
S c a l a r mRangeMax ;

29 S c a l a r mRangeMin ;
S c a l a r mMu;

31
S c a l a r So lveNext ( S c a l a r prevLambda ) ;

33 void ResetKM ( ) const ;
void S h i f t S t i f f n e s s ( S c a l a r lambda ) ;

35 void StoreMode ( i n t modeNumber , S c a l a r omega ) const ;

37 i n t GetDOFCount ( ) const ;

39 } ;

:
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